Continuously varying exponents for oriented self-avoiding walks
نویسندگان
چکیده
منابع مشابه
Continuously Varying Exponents for Oriented Self-avoiding Walks
A two-dimensional conformal field theory with a conserved U(1) current ~ J , when perturbed by the operator ~ J 2, exhibits a line of fixed points along which the scaling dimensions of the operators with non-zero U(1) charge vary continuously. This result is applied to the problem of oriented polymers (self-avoiding walks) in which the short-range repulsive interactions between two segments dep...
متن کاملCorrection-to-Scaling Exponents for Two-Dimensional Self-Avoiding Walks
We study the correction-to-scaling exponents for the two-dimensional selfavoiding walk, using a combination of series-extrapolation and Monte Carlo methods. We enumerate all self-avoiding walks up to 59 steps on the square lattice, and up to 40 steps on the triangular lattice, measuring the mean-square end-to-end distance, the mean-square radius of gyration and the mean-square distance of a mon...
متن کاملContinuously Varying Critical Exponents Beyond Weak Universality
Renormalization group theory does not restrict the form of continuous variation of critical exponents which occurs in presence of a marginal operator. However, the continuous variation of critical exponents, observed in different contexts, usually follows a weak universality scenario where some of the exponents (e.g., β, γ, ν) vary keeping others (e.g., δ, η) fixed. Here we report ferromagnetic...
متن کاملPercolation model with continuously varying exponents.
This work analyzes a percolation model on the diamond hierarchical lattice (DHL), where the percolation transition is retarded by the inclusion of a probability of erasing specific connected structures. It has been inspired by the recent interest on the existence of other universality classes of percolation models. The exact scale invariance and renormalization properties of DHL leads to recurr...
متن کاملAnisotropic Self - Avoiding Walks
We consider a model of self-avoiding walks on the lattice Zd with different weights for steps in each of the 2d lattice directions. We find that the directiondependent mass for the two-point function of this model has three phases: mass positive in all directions; mass identically −∞; and masses of different signs in different directions. The final possibility can only occur if the weights are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 1994
ISSN: 0550-3213
DOI: 10.1016/0550-3213(94)90337-9